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Motivation 

  For many probabilistic models, exact inference is 
intractable. 

  In such cases, approximate solutions can often be 
obtained by sampling. 

  We will focus on estimating expectations of 
functions of the hidden variables z, i.e., 

   E[f ] = f (z)p(z)dz∫
p(z) f(z)

z
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Goal 

  Basic idea: 
   E[f ] = f (z)p(z)dz∫

  
f̂ =

1
L

f z l( )( )
l=1

L

∑

   Draw L independent samples z l( )  from the distribution p(z).

  Then E[f ] can be approximated by:
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Goal 

  You can verify that: 

  and 

  Thus the accuracy does not depend upon the 
dimensionality of z! 

  
E f̂⎡⎣ ⎤⎦ = E f⎡⎣ ⎤⎦

  
var f̂⎡⎣ ⎤⎦ =

1
L

E f − E f⎡⎣ ⎤⎦( )2⎡
⎣⎢

⎤
⎦⎥
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Sampling methods 

  Directed graphical models 
 Can use ancestral sampling. 

  Markov random fields 
 No one-pass method. 
   Can use Gibbs sampling. 
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Outline 

  Basic sampling algorithms 
  Markov Chain Monte Carlo (MCMC) 
  Gibbs Sampling 
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BASIC SAMPLING 
ALGORITHMS 



Standard Distributions 
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Standard distributions 

  Suppose that we have a good method for 
generating (pseudo-)random uniformly distributed 
numbers z over [0, 1]. 
 e.g., MATLAB’s unifrnd(). 

  Suppose that we wish to generate samples from a 
standard distribution p(y). 

  We would like to find a deterministic function f(z) 
that will transform each sample z to a sample y such 
that y is distributed according to p(y). 
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Standard distributions 

  Recall that: 

  
p(y) = p(z) dz

dy

   Then z =  f −1(y)  h(y) will be an increasing function of y.

  

Without loss of generality, we choose 
y = f (z) to be an increasing function of z.

  
Thus dz = p(y)dy → z = h(y) = p ŷ( )dŷ

−∞

y

∫
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Standard distributions 

  Thus to sample from p(y), we generate random 
uniformly distributed numbers z, then transform them 
according to 

  

y = h−1(z),

where h(y) = p ŷ( )dŷ
−∞

y

∫
p(y)

h(y)

y0

1
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Generalization to multivariate distributions 

   
p y1,…yM( ) = p z1,…zM( ) ∂ z1,…zM( )

∂ y1,…yM( )

   
where 

∂ z1,…zM( )
∂ y1,…yM( )  is the Jacobian of h.
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Example 1 

  The exponential distribution 

  
p(y) = λ exp −λy( ), y ≥ 0
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Example 2 

  The Cauchy distribution 

  
p(y) = 1

π
1

1+ y 2
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Example 3 

  Box-Muller method for generating i.i.d. Gaussian 
samples 

−1
−1

1

1z1

z2

  1. Generate samples from two i.i.d. uniformly-distributed rv's z1,z2 ∈[−1,1]

 2. Reject samples lying outside unit circle.

  

3. Now transform to samples y1,y2  according to:

y1 = z1

2log r 2

r 2

⎛

⎝⎜
⎞

⎠⎟

1/2

y2 = z2

2log r 2

r 2

⎛

⎝⎜
⎞

⎠⎟

1/2

  It can be shown that y1,y2  are i.i.d. standard normal variables (0-mean, unit variance).

  

To generate i.i.d. Gaussian rv's with mean µ  and std deviation σ, 
transform according to σy + µ.
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Example 4 

  Multivariate normal distributions 

   Use Cholesky decomposition Σ = LLt

   

Then if z is a standard normal random vector, 
y = µ + Lz will generate samples from N y;µ,Σ( ).
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Limitations of the standard method 

  Often the integration of p(y) and/or inverse to 
generate h(z) is not tractable. 
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Assignment 2 Competition Results 
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Rejection Sampling 
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Motivation 

  Though it may be difficult to sample fairly from p(z) 
directly, it is often the case that p(z) can easily be 
evaluated for any given z (at least up to a 
normalizing constant Z). 

    
i.e., p(z) = 1

Zp

p(z),  where p(z) can readily be evaluated.
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Main Idea 

  Consider first the univariate case. 
  Suppose we have a simpler distribution q(z) from 

which we can readily draw fair samples. 
  Suppose further we can find a constant k such that: 

z0 z

u0

kq(z0) kq(z)

�p(z)

   kq(z) ≥ p(z).
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Algorithm 

z0 z

u0

kq(z0) kq(z)

�p(z)

  1.  Generate a sample z0  from q(z).

  
2.  Generate a number u0  from the uniform distribution on 0,kq z0( )⎡⎣ ⎤⎦ .

  
Note that (z0,u0) is uniformly distributed under the curve kq(z).( )

   
3. If u0 > p z0( ),  reject the sample, otherwise retain.

   
The retained pairs z0,u0( )  will have a uniform distribution under p(z).

  Thus the corresponding z values will be fair samples from p(z).
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Efficiency 

  The probability that a proposal is accepted is given 
by 

  Thus we want k to be as small as possible. 

z0 z

u0

kq(z0) kq(z)

�p(z)

   
p(accept) = p(z) / kq(z){ }q(z)dz∫ =

1
k
p(z)dz∫ .
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Example 

  Suppose we wish to sample from the gamma distribution: 

  We know we can sample from the Cauchy distribution.  We generalize 
slightly, and transform uniform random variables y according to 

  which yields 

  The minimum rejection rate is obtained by setting 
z

p(z)

0 10 20 30
0

0.05

0.1

0.15

  
Gam(z | a,b) = baza−1 exp(−bz)

Γ(a)

  z = b tan y + c

  
q(z) = k

1+ (z − c)2 / b2

  c = a −1,  b2 = 2a −1
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Limitations 

  Can be hard to find a good bound kq(z). 
  Acceptance rate declines exponentially with 

dimensionality 



Importance Sampling 
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Importance Sampling 

  Rather than trying to sample fairly from p(z), let’s just try to 
estimate the expectation E[f] directly. 

  Note that all samples can be retained. 

p(z) f(z)

z

q(z)
   E[f ] = f (z)p(z)dz∫

   

where the importance weights rl =
p z l( )( )
q z l( )( )  

correct the bias introduced by sampling the wrong distribution.

   
= f (z) p(z)

q(z)
q(z)dz∫

    


1
L

p z l( )( )
q z l( )( ) f z l( )( )

l=1

L

∑
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Importance Sampling 

  Suppose that p(z) and q(z) can only be evaluated up to a 
constant, 

  Then we have  

p(z) f(z)

z

q(z)

   E[f ] = f (z)p(z)dz∫

    

where rl =
p z l( )( )
q z l( )( ) .

    

i.e., we can sample from q(z), and can calculate p(z),

where p(z) = 1
Zp

p(z),  and q(z) = 1
Zq

q(z).

    
=

Zq

Zp

f (z)
p(z)
q(z)

q(z)dz∫

    


Zq

Zp

1
L

rlf z l( )( )
l=1

L

∑
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Importance Sampling 

  Furthermore, 

p(z) f(z)

z

q(z)

    

Zp

Zq

=
1

Zq

p(z)dz∫ =
p(z)
q(z)

q(z)dz∫ 
1
L

rl
l=1

L

∑

    

where wl =
rl

rm
m
∑

=
p z l( )( ) q z l( )( )
p z m( )( ) q z m( )( )

m
∑

.

    
Thus E[f ]  wlf z( l )( )

l=1

L

∑
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Limitations 

  Requires a good proposal distribution q(z). 
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Likelihood Weighted Sampling 

  A form of importance sampling can be applied to 
directed graphical models when some of the nodes 
have been observed. 

  Let the evidence set e represent the subset of variables that have been observed.

 The algorithm is a modification of ancestral sampling in which:

   1. If z ∈e, set z to its observed value.

   

The resulting sample z is then assigned the weight

r(z) =
p z i | pai( )
p z i | pai( )zi ∉e

∏
p z i | pai( )

1zi ∈e
∏ = p z i | pai( )

zi ∈e
∏

   2. Otherwise, sample from p z i | pai( ).
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Extensions 

  Sampling-importance-resampling 
 Uses proposal distribution q(z) to generate sample z 

with distribution that approximates p(z). 
 Two-stage sampling process 
 Unlike rejection sampling, all samples are retained. 

  Monte Carlo EM 
   Approximate E-step by sampling 
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MARKOV CHAIN MONTE 
CARLO METHODS 
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Motivation 

  Rejection sampling and importance sampling do not 
scale well to high dimension. 

  MCMC can potentially do better in higher 
dimensions, by staying in higher probability regions 
of the variable space 
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Basic Idea 

   

Instead of sampling independently, each sample depends upon the 
previous sample through a conditional proposal distribution q z | z(τ )( ),
forming a Markov chain of samples z(1),z(2),…
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Example:  Metropolis Algorithm 

   

Requires symmetric proposal distribution:
q zA | zB( ) = q zB | zA( )

   

Sample is then accepted with probability

A z*,z(τ )( ) = min 1,
p z *( )
p z(τ )( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 Note that samples that increase the probability are always kept.

  If candidate sample accepted, then z(τ +1) ← z * .

  Otherwise, z(τ +1) ← z(τ ).

 This leads to multiple copies of higher probability samples.
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Metropolis Algorithm:  Properties 

   

If q zA | zB( ) > 0∀zA,zB

Then the distribution of z(τ ) → p(z) as τ → ∞.

  Note that the z(τ )  are not independent.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
Example 
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GIBBS SAMPLING 
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Gibbs Sampling 

  Gibbs Sampling is a particularly simple form of 
MCMC algorithm. 

  It’s applicable to multivariate distributions for which 
the conditional distributions of the individual 
variables can be readily computed (e.g., MRFs). 

  Each step involves replacing the value of one 
variable by a value drawn from the distribution of 
that variable conditioned on the current values of 
the remaining variables. 
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Gibbs Sampling:  Algorithm 

  
1. Initialize z i

(0){ }
 2. Repeat until convergence

  a. Select a zi

   
b. Sample zi

τ +1( ) ∼ p zi | z(τ ) \ zi
(τ )( ) = p zi | ne zi

(τ )( )( )

   

As long as p zi | z(τ ) \ zi
(τ )( ) > 0∀z, i

Then the distribution of z(τ ) → p(z) as τ → ∞.


